30 research outputs found

    Finite Dimensional Infinite Constellations

    Full text link
    In the setting of a Gaussian channel without power constraints, proposed by Poltyrev, the codewords are points in an n-dimensional Euclidean space (an infinite constellation) and the tradeoff between their density and the error probability is considered. The capacity in this setting is the highest achievable normalized log density (NLD) with vanishing error probability. This capacity as well as error exponent bounds for this setting are known. In this work we consider the optimal performance achievable in the fixed blocklength (dimension) regime. We provide two new achievability bounds, and extend the validity of the sphere bound to finite dimensional infinite constellations. We also provide asymptotic analysis of the bounds: When the NLD is fixed, we provide asymptotic expansions for the bounds that are significantly tighter than the previously known error exponent results. When the error probability is fixed, we show that as n grows, the gap to capacity is inversely proportional (up to the first order) to the square-root of n where the proportion constant is given by the inverse Q-function of the allowed error probability, times the square root of 1/2. In an analogy to similar result in channel coding, the dispersion of infinite constellations is 1/2nat^2 per channel use. All our achievability results use lattices and therefore hold for the maximal error probability as well. Connections to the error exponent of the power constrained Gaussian channel and to the volume-to-noise ratio as a figure of merit are discussed. In addition, we demonstrate the tightness of the results numerically and compare to state-of-the-art coding schemes.Comment: 54 pages, 13 figures. Submitted to IEEE Transactions on Information Theor

    Bridging Dense and Sparse Maximum Inner Product Search

    Full text link
    Maximum inner product search (MIPS) over dense and sparse vectors have progressed independently in a bifurcated literature for decades; the latter is better known as top-kk retrieval in Information Retrieval. This duality exists because sparse and dense vectors serve different end goals. That is despite the fact that they are manifestations of the same mathematical problem. In this work, we ask if algorithms for dense vectors could be applied effectively to sparse vectors, particularly those that violate the assumptions underlying top-kk retrieval methods. We study IVF-based retrieval where vectors are partitioned into clusters and only a fraction of clusters are searched during retrieval. We conduct a comprehensive analysis of dimensionality reduction for sparse vectors, and examine standard and spherical KMeans for partitioning. Our experiments demonstrate that IVF serves as an efficient solution for sparse MIPS. As byproducts, we identify two research opportunities and demonstrate their potential. First, we cast the IVF paradigm as a dynamic pruning technique and turn that insight into a novel organization of the inverted index for approximate MIPS for general sparse vectors. Second, we offer a unified regime for MIPS over vectors that have dense and sparse subspaces, and show its robustness to query distributions

    An Approximate Algorithm for Maximum Inner Product Search over Streaming Sparse Vectors

    Full text link
    Maximum Inner Product Search or top-k retrieval on sparse vectors is well-understood in information retrieval, with a number of mature algorithms that solve it exactly. However, all existing algorithms are tailored to text and frequency-based similarity measures. To achieve optimal memory footprint and query latency, they rely on the near stationarity of documents and on laws governing natural languages. We consider, instead, a setup in which collections are streaming -- necessitating dynamic indexing -- and where indexing and retrieval must work with arbitrarily distributed real-valued vectors. As we show, existing algorithms are no longer competitive in this setup, even against naive solutions. We investigate this gap and present a novel approximate solution, called Sinnamon, that can efficiently retrieve the top-k results for sparse real valued vectors drawn from arbitrary distributions. Notably, Sinnamon offers levers to trade-off memory consumption, latency, and accuracy, making the algorithm suitable for constrained applications and systems. We give theoretical results on the error introduced by the approximate nature of the algorithm, and present an empirical evaluation of its performance on two hardware platforms and synthetic and real-valued datasets. We conclude by laying out concrete directions for future research on this general top-k retrieval problem over sparse vectors

    Primary hyperoxaluria: from gene defects to designer drugs?

    No full text
    A new variant of bit interleaved coded modulation (BICM) is proposed. In the new scheme, called Parallel BICM, L identical binary codes are used in parallel using a mapper, a newly proposed finite-length interleaver and a binary dither signal. As opposed to previous approaches, the scheme does not rely on any assumptions of an ideal, infinite-length interleaver. Over a memoryless channel, the new scheme is proven to be equivalent to a binary memoryless channel. Therefore the scheme enables one to easily design coded modulation schemes using a simple binary code that was designed for that binary channel. The overall performance of the coded modulation scheme is analytically evaluated based on the performance of the binary code over the binary channel. The new scheme is analyzed from an information theoretic viewpoint, where the capacity, error exponent and channel dispersion are considered. The capacity of the scheme is identical to the BICM capacity. The error exponent of the scheme is numerically compared to a recently proposed mismatched-decoding exponent analysis of BICM.Comment: 19 pages, 15 figures. A shorter version will be presented at the 48th Allerton Conference on Communication, Control, and Computing (Allerton 2010
    corecore